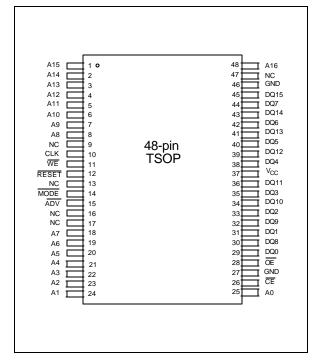


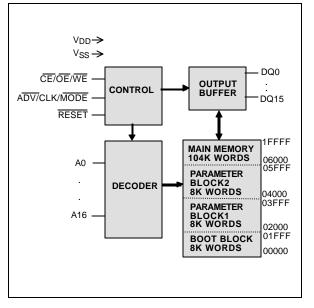
128K [•] 16 CMOS FLASH MEMORY WITH SYNCHRONOUS BURST READ

GENERAL DESCRIPTION

The W29S201 is a 2-megabit, 5-volt only CMOS flash memory organized as $128K \times 16$ bits. The W29S201 supports both assynchronous & high performance synchronous burst read modes. The device can be programmed and erased in-system with a standard 5V power supply. A 12-volt VPP is not required. The unique cell architecture of the W29S201 results in fast program/erase operations with extremely low current consumption (compared to other comparable 5-volt flash memory products). The device can also be programmed and erased using standard EPROM programmers.


FEATURES

- Single 5-volt operations:
 - 5-volt Read
 - 5-volt Erase
 - 5-volt Program
- Fast Program operation:
 - Word-by-Word programming: 50 μ S (max.)
- Fast Erase operation: 100 mS (typ.)
- Fast Synchronous Burst Read access time: 15/17 nS (typ.)
- High performance synchronous burst read mode up to 50Mhz Clock Frequency
- Support Linear Burst Mode Read with Wrap-Around Feature.
- No Burst Length Limitation.
- Fast Assynchronous Random Read access time: 45//55 nS
- Endurance: 1K/10K cycles (min.)
- Twenty-year data retention
- Hardware data protection


- Sector configuration
 - One 8K words boot block with lockout protection
 - Two 8K words parameter blocks
 - One 104K words (208K bytes) Main Memory Array Blocks
- Low power consumption
 - Active current: 35 mA (typ.)
 - Standby current: 20 μA (typ.)
- Automatic program and erase timing with internal VPP generation
- End of program or erase detection
 - Toggle bit
 - Data polling
- · Latched address and data
- TTL compatible I/O
- JEDEC standard word-wide pinouts
- Available packages: 48-pin TSOP

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME			
RESET	Reset			
A0–A16	Address Inputs			
DQ0–DQ15	Data Inputs/Outputs			
CE	Chip Enable			
OE	Output Enable			
WE	Write Enable			
ADV	Address Valid			
CLK	Clock			
MODE	Synch/Assyn Mode Select			
VDD	Power Supply			
GND	Ground			
NC	No Connection			

Electronics Corp.

FUNCTIONAL DESCRIPTION

Synchronous Burst & Asynchronous Read Mode Features

The Winbond ^SW29S201 Flash device requires 3 additional control pins for synchronous burst read operations: Synchronous/Assynchronous Read Mode Select (MODE), Address Valid (ADV), and Clock (CLK). This synchronous read mode feature allows W29S201 to be interfaced easily to a wide range of DSP, microprocessors, micro-controllers for higher performance read operations. All these 3 pins are only activated internally when chip is selected ($\overline{CE}=V_{\parallel}$). The MODE input pin is used to select either synchronous or assynchronous read mode for the memory read operations. If MODE is held low, the synchronous burst read mode is selected for the read operation, and if MODE is held high then assynchronous read mode is selected for all read operations (the ADV and CLK are ignored by the Flash internally). The ADV input pin is used when the chip is selected in the synchronous read mode $(\overline{CE} = V_{\parallel})$ and $\overline{MODE} = V_{\parallel}$ to load the initial random address into the Flash at the rising edge of the clock when ADV = V_{IL} , and to increment the internal address counter at the rising edge of the clock when ADV = V_{IH} . The CLK input pin can be tied to the system clock to provide the fundamental timing and array synchronous burst read operating frequency. Both ADV and CLK inputs are only enabled when chip is selected to operate in the synchronous burst read mode ($CE = V_{IL}$ and $MODE = V_{IL}$). The MODE input pin is internally pulled high for applications which does not require the synchronous burst read operations, hence allowing these additional 3 pins to be considered as the No Connect (NC) pins. However, Winbond recommends that these 3 pins be driven at known logic level externally if possible. The states of these 3 additional pins are ignored during all write operations.

Assynchronous Random Read Mode

The assynchronous read operation of the W29S201 is controlled by \overline{CE} and \overline{OE} , both of which have to be low for the host to obtain data from the outputs. \overline{CE} is used for device selection. When \overline{CE} is high, the chip is de-selected and only standby power will be consumed. \overline{OE} is the output control and is used to gate data from the output pins. The data bus is in high impedance state when either \overline{CE} or \overline{OE} is high. Refer to the timing waveforms for further details.

Synchronous Burst Read Mode

Beside being assynchronously controlled by \overline{CE} and \overline{OE} pins similarly as in the assynchronous read operations, the selected W29S201 Flash device when used in synchronous burst read operation mode $(\overline{MODE} = V_{IL})$ requires the host to provide the initial random burst address by driving the \overline{ADV} pin low at the rising edge of the clock (CLK) to latch the initial burst random address into the Flash device. Initial output data (at DQ pins) become available 2 clock cycles (or 3 clock cycles depending on starting address, refer to the timing waveforms for further details). By driving the \overline{ADV} pin high at the rising edge of the clock enables the W29S201 device to read data from the next binary incremental address (linear burst mode). Sequential output data becomes available T_{KQV} (15/17) ns of burst access time after the rising edge of the clock (always 2 CLK periods after the address increment started, i.e., \overline{ADV} pin went high). There is no burst length limitation for the W29S201 device architecture, hence allowing the host to sequentially read out the entire memory data (128K words) with just one burst read operation. The W29S201 also supports full memory array linear wrap-around mode. The W29S201Q-45/55 can be used

Electronics Corp.

to operate at a system clock frequency as high as 50/40Mhz with only 3 initial wait-states (3-1-1-1) required for the initial random access depending on the host performance and capability on the starting & ending burst address. Refer to the timing waveforms for further details.

Reset Operation

The $\overrightarrow{\text{RESET}}$ input pin can be used in some application. When $\overrightarrow{\text{RESET}}$ pin is at high state, the device is in normal operation mode. When $\overrightarrow{\text{RESET}}$ pin is driven low for at least a period of T_{RP} , it will halts the device and all outputs are at high impedance state. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to assure data integrity. As the high state re-asserted to the $\overrightarrow{\text{RESET}}$ pin, the device will return to read or standby mode, it depends on the control signals. The system can read data T_{RH} after the $\overrightarrow{\text{RESET}}$ pin returns to V_{IH} . The other function for $\overrightarrow{\text{RESET}}$ pin is temporary reset the boot block. By applying the 12V to $\overrightarrow{\text{RESET}}$ pin, the boot block can be reprogrammed even though the boot block lockout function is enabled.

Boot Block Operation

There is one 8K-word boot block in this device, which can be used to store boot code. It is located in the first 8K words of the memory with the address range from 0000(hex) to 1FFF(hex).

See Command Codes for Boot Block Lockout Enable for the specific code. Once this feature is set the data for the designated block cannot be erased or programmed (programming lockout); other memory locations can be changed by the regular programming method. Once the boot block programming lockout feature is activated, the chip erase function will be disable.

There is one condition that the lockout feature can be overrides. Just apply 12V to RESET pin, the lockout feature will temporary be inactivated and the block can be erased/programmed. Once the RESET pin returns to TTL level, the lockout feature will be activated again.

In order to detect whether the boot block feature is set on the 8K-words block, users can perform software command sequence: enter the product identification mode (see Command Codes for Identification/Boot Block Lockout Detection for specific code), and then read from address "0002 hex". If the output data in DQ0 is "1", the boot block programming lockout feature is activated; if the output data in DQ0 is "0", the lockout feature is inactivated and the block can be erased or programmed.

To return to normal operation, perform a three-byte command sequence (or an alternate single-word command) to exit the identification mode. For the specific code, see Command Codes for Identification/Boot Block Lockout Detection.

Chip Erase Operation

The chip-erase mode can be initiated by a six-word command sequence. After the command loading cycle, the device enters the internal chip erase mode, which is automatically timed and will be completed in a fast 100 mS (typical). The host system is not required to provide any control or timing during this operation. The entire memory array will be erased to FF(hex). by the chip erase operation if the boot block programming lockout feature is not activated. Once the boot block lockout feature is activated, the chip erase function will be disable. The device will automatically return to normal read mode after the erase operation completed. Data polling and/or Toggle Bits can be used to detect end of erase cycle.

Electronics Corp.

Sector Erase Operation

The three sectors, main memory and two parameters blocks, can be erased individually by initiating a six-word command sequence. Sector address is latched on the falling WE edge of the sixth cycle while the 30(hex) data input command is latched at the rising edge of WE. After the command loading cycle, the device enters the internal sector erase mode, which is automatically timed and will be completed in a fast 100 mS (typical). The host system is not required to provide any control or timing during this operation. The device will automatically return to normal read mode after the erase operation completed. Data polling and/or Toggle Bits can be used to detect end of erase cycle.

When the boot block lockout feature is inactivated, the boot block and the main memory block will be erased together. Once the boot block is locked, only the main memory block will be erased by the execution of sector erase operation.

Program Operation

The W29S201 is programmed on a word-by-word basis. Program operation can only change logical data "1" to logical data "0" The erase operation (changed entire data in main memory and/or boot block from "0" to "1" is needed before programming.

The program operation is initiated by a 4-word command cycle (see Command Codes for Word Programming). The device will internally enter the program operation immediately after the word-program command is entered. The internal program timer will automatically time-out (50 μ S max. - TBP) once completed and return to normal read mode. Data polling and/or Toggle Bits can be used to detect end of program cycle.

Hardware Data Protection

The integrity of the data stored in the W29S201 is also hardware protected in the following ways:

- (1) Noise/Glitch Protection: A \overline{WE} pulse of less than 15 nS in duration will not initiate a write cycle.
- (2) VDD Power Up/Down Detection: The programming operation is inhibited when VDD is less than 2.5V typical.
- (3) Write Inhibit Mode: Forcing \overline{OE} low, \overline{CE} high, or \overline{WE} high will inhibit the write operation. This prevents inadvertent writes during power-up or power-down periods.
- (4) VDD power-on delay: When VDD has reached its sense level, the device will automatically time-out 5 mS before any write (erase/program) operation.

Data Polling (DQ7)- Write Status Detection

The W29S201 includes a data polling feature to indicate the end of a program or erase cycle. When the W29S201 is in the internal program or erase cycle, any attempt to read DQ7 of the last word loaded will receive the complement of the true data. Once the program or erase cycle is completed, DQ7 will show the true data. Note that DQ7 will show logical "0" during the erase cycle, and become logical "1" or true data when the erase cycle has been completed. Note that is for assynchronous read mode only $(\overline{\text{MODE}} = V_{\text{IH}})$.

Toggle Bit (DQ6)- Write Status Detection

In addition to data polling, the W29S201 provides another method for determining the end of a program cycle. During the internal program or erase cycle, any consecutive attempts to read DQ6 will produce alternating 0's and 1's. When the program or erase cycle is completed, this toggling between 0's and 1's

Electronics Corp.

will stop. The device is then ready for the next operation. Note that is for assynchronous read mode only $(\overline{\text{MODE}} = V_{H})$.

Product Identification

The product ID operation outputs the manufacturer code and device code. Programming equipment automatically matches the device with its proper erase and programming algorithms.

The manufacturer and device codes can be accessed by software or hardware operation. In the software access mode, a six-word (or JEDEC 3-word) command sequence can be used to access the product ID. A read from address 0000H outputs the manufacturer code, 00DA(hex). A read from address 0001(hex) outputs the device code, 0FAE(hex). The product ID operation can be terminated by a three-word command sequence or an alternative one-word command sequence (see Command Definition table).

In the hardware access mode, access to the product ID is activated by forcing \overline{CE} and \overline{OE} low, \overline{WE} high, and raising A9 to 12 volts.

Note that is for assynchronous read mode only ($\overline{MODE} = V_{IH}$).

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Power Supply Voltage to Vss Potential	-0.5 to +7.0	V
Operating Temperature	0 to +70	°C
Storage Temperature	-65 to +150	°C
D.C. Voltage on Any Pin to Ground Potential except A9	-0.5 to VDD +1.0	V
Transient Voltage (<20 nS) on Any Pin to Ground Potential	-1.0 to VDD +1.0	V
Voltage on A9 Pin to Ground Potential	-0.5 to 12.5	V

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device. The above ratings are for maximum stress ratings only, functional operation under these conditions or at any other condition beyond those indicated in the operational sections of this datasheet is not implied.

TABLE OF OPERATING MODES

Operating Mode Selection

 $(V_{HH} = 12V \pm 0.5V)$

MODE							PINS		
	CE	OE	WE	RESET	MODE	ADV	CLK	ADDRESS	DQ.
Latch Burst Address	V⊫	Х	VIH	VIH	VL	V⊫	↑	AIN	High Z/DOUT
Burst Address Increment Read	VL	V⊫	VIH	VIH	VL	V⊪	\uparrow	X	Dout
Read (Assyn.)	V⊫	VL	Vн	V⊪	VIH	Х	Х	AIN	Dout
Erase/Program	V⊾	VIH	VL	Vн	Х	Х	Х	AIN	Din
Standby	V⊪	Х	Х	Vн	Х	Х	Х	Х	High Z
Erase/Program	Х	V⊫	Х	Vн	Х	Х	Х	Х	High Z/DOUT
Inhibit	Х	Х	V⊪	Vн	Х	Х	Х	Х	High Z/DOUT
Output Disable	Х	VIH	Х	Vн	Х	Х	Х	Х	High Z
Product ID (Assyn. Read)	V⊫	V⊫	V⊪	Vн	Vн	Х	Х	A0 = VL; A1–A15 = VL; A9 = VHH	Manufacturer Code 00DA (Hex)
	V⊫	VIL	V⊪	Vн	Vн	Х	Х	A0 = V⊪; A1–A15 = V⊾; A9 = Vнн	Device Code 0FAE (Hex)
Reset	Х	Х	Х	VL	Х	Х	Х	Х	High Z

COMMAND	NO. OF	1ST CYCLE	2ND CYCLE	3RD CYCLE	4TH CYCLE	5TH CYCLE	6TH CYCLE
DESCRIPTION	Cycles	Addr. Data	Addr. Data	Addr. Data	Addr. Data	Addr. Data	Addr. Data
Read	1	A _{IN} D _{OUT}					
Chip Erase	6	5555 AA	2AAA 55	5555 80	5555 AA	2AAA 55	5555 10
Main Memory Erase	6	5555 AA	2AAA 55	5555 80	5555 AA	2AAA 55	SA 30
Word Program	4	5555 AA	2AAA 55	5555 A0	A _{IN} D _{IN}		
Boot Block Lockout	6	5555 AA	2AAA 55	5555 80	5555 AA	2AAA 55	5555 40
Product ID Entry	3	5555 AA	2AAA 55	5555 90			
Product ID Exit ⁽¹⁾	3	5555 AA	2AAA 55	5555 F0			
Product ID Exit ⁽¹⁾	1	XXXX F0					

TABLE OF COMMAND DEFINITION

Note: 1. Address Format: A14–A0 (Hex); Data Format: DQ15–DQ8 (Don't Care); DQ7-DQ0 (Hex)

2. Either one of the two Product ID Exit commands can be used.

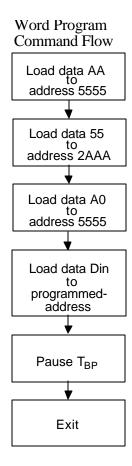
3. SA : Sector Address

SA = 03XXXh for Parameter Block1

SA = 05XXXh for Parameter Block2

SA = 1FXXXh

- for Main Memory Block when Boot Block lockout feature is activated


- for both Boot Block and Main Memory Block when Boot Block lockout feature is inactivated

Command Codes for Word Program

WORD SEQUENCE	ADDRESS	DATA		
0 Write	5555H	ААН		
1 Write	2AAAH	55H		
2 Write	5555H A0H			
3 Write	Programmed-Address Programmed-Data			
	Pause T _{BP}			

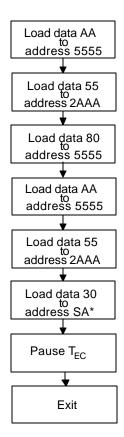
Word Program Flow Chart

Notes for software program code: Data Format: DQ15–DQ8: Don't Care ; DQ7-DQ0(Hex) Address Format: A14–A0 (Hex)

Command Codes for Chip Erase

BYTE SEQUENCE	ADDRESS	DATA		
1 Write	5555H	AAH		
2 Write	2AAAH	55H		
3 Write	5555H	80H		
4 Write	5555H	AAH		
5 Write	2AAAH	55H		
6 Write	5555H	10H		
	Pause T _{EC}			

Chip Erase Acquisition Flow


Notes for chip erase: Data Format: DQ15-DQ8: Don't Care ; DQ7–DQ0 (Hex) Address Format: A14–A0 (Hex)

Command Codes for Sector Erase

BYTE SEQUENCE	ADDRESS	DATA		
1 Write	5555H	AAH		
2 Write	2AAAH	55H		
3 Write	5555H 80H			
4 Write	5555H	ААН		
5 Write	2AAAH	55H		
6 Write	SA*	30H		
	Pause T _{EC}			

Sector Erase Acquisition Flow

Notes for chip erase:

Data Format: DQ15-DQ8: Don't Care ; DQ7-DQ0 (Hex)

Address Format: A14–A0 (Hex)

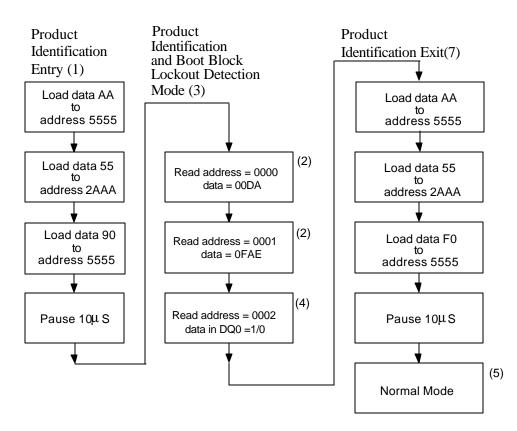
SA = 03XXX for parameter block1

SA = 05XXX for parameter block2

SA = 1FXXX

- for Main Memory Block when Boot Block lockout feature is activated

- for both Boot Block and Main Memory Block when Boot Block lockout feature is inactivated

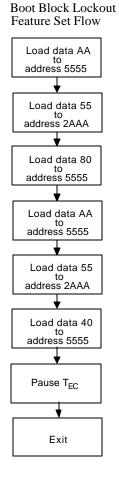


Command Codes for Product Identification and Boot Block Lockout Detection

BYTE SEQUENCE	ALTERNATE PRODUCT (6) IDENTIFICATION/BOOT BLOCK LOCKOUT DETECTION ENTRY		SOFTWARE IDENTIFICATION/BOO DETECTIO	T BLOCK LOCKOUT
	ADDRESS DATA		ADDRESS	DATA
1 Write	5555	AA	5555H	AAH
2 Write	2AAA	55	2AAAH	55H
3 Write	5555 90		5555H	F0H
	Pause	e 10μS	Pause	e 10μS

Software Product Identification and Boot Block Lockout Detection Acquisition Flow

Notes for software product identification/boot block lockout detection:


- (1) Data Format: DQ15-DQ8 (Don't Care), DQ7-DQ0 (Hex); Address Format: A14-A0 (Hex)
- (2) A1–A16 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH.
- (3) The device does not remain in identification and boot block lockout detection mode if power down.
- (4) If the output data in DQ0 = 1, the boot block programming lockout feature is activated; if the output data in DQ0 = 0, the lockout feature is inactivated and the block can be programmed.
- (5) The device returns to standard operation mode.
- (6) Optional 1-write cycle (write F0 hex at XXXX address) can be used to exit the product identification/boot block lockout detection.

Command Codes for Boot Block Lockout Enable

BYTE SEQUENCE	BOOT BLOCK LOCKOUT FEATURE SET			
	ADDRESS	DATA		
1 Write	5555H	AAH		
2 Write	2AAAH	55H		
3 Write	5555H	80H		
4 Write	5555H	AAH		
5 Write	2AAAH	55H		
6 Write	5555H	40H		
	Pause T _{EC}			

Boot Block Lockout Enable Acquisition Flow

Notes for boot block lockout enable: Data Format: DQ15-DQ8 Don't Care), DQ7–DQ0 (Hex) Address Format: A14–A0 (Hex)

DC CHARACTERISTICS

DC Operating Characteristics

 $(V_{DD} = 5.0V \pm 10\%, V_{SS} = 0V, T_A = 0 \text{ to } 70^{\circ} \text{ C})$

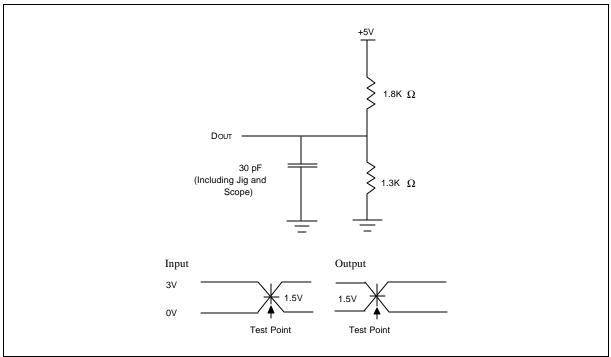
PARAMETER	SYM.	TEST CONDITIONS		LIM	ITS	UNIT
			MIN.	TYP.	MAX.	
VDD Assyn. Read Current	ICCR1	$\overline{CE} = \overline{OE} = VIL, \overline{WE} = VIH, \overline{MODE} = VIH,$	-	35	75	mA
Ourion		all DQs open, CLK & ADV = V⊫/Vℍ, Address Inputs =V⊫/Vℍ at f = 5 MHz				
VDD Synch Burst	ICCR2	$\overline{CE} = \overline{OE} = V \mathbb{L}, \ \overline{WE} = V \mathbb{H}, \ \overline{MODE} = V \mathbb{L}, \ all$	-	-	175	mA
Read Current		DQs open, ADV =VIL/VIH, Address Inputs =VIL/VIH, CLK at f = FCLK (max.)				
VDD Erase or Program Current	ICCW	Erase or Program Operation in Progress, all DQs open.		-	50	mA
Standby VDD	ISB1	 CE = V⊮, all DQs open	-	2	3	mA
Current (TTL input)		Other inputs = VIL/VIH				
Standby VDD Current	ISB2	$\overline{CE} = VDD \pm 0.3V$, all DQs open	-	20	200	μA
(CMOS input)		Other Inputs = GND±0.3V or VDD±0.3V				
Input Leakage Current	ILI	VIN = GND to VDD	-	-	± 10	μΑ
Output Leakage Current	ILO	VOUT = GND to VDD	-	-	± 10	μA
Input Low Voltage	VL	-	-0.3	-	0.8	V
Input High Voltage	VIH	-	2.0	-	VDD +0.5	V
Output Low Voltage	Vol	IOL = 2.1 mA	-	-	0.45	V
Output High Voltage	VOH	IOH = -0.4 mA	2.4	-	-	V

Power-up Timing

PARAMETER	SYMBOL	TYPICAL	UNIT
Power-up to Read Operation	TPU. READ	100	μS
Power-up to Write Operation	TPU. WRITE	5	mS

CAPACITANCE

 $(V_{DD} = 5.0V, T_A = 25^{\circ} C, f = 1 MHz)$


PARAMETER	SYMBOL	CONDITIONS	MAX.	UNIT
I/O Pin Capacitance	CI/O	VI/O = 0V	12	pf
Input Capacitance	CiN	VIN = 0V	6	pf

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3.0V
Input Rise/Fall Time	< 5 nS
Input/Output Timing Level	1.5V/1.5V
Output Load	1 TTL Gate and CL = 30 pF

AC Test Load and Waveform

Assynchronous Read Cycle Timing Parameters

 $(Vcc = 5.0V \pm 10\%, Vcc = 0V, TA = 0 \text{ to } 70^{\circ} \text{ C})$

PARAMETER	SYM.	W29S201-45		W29S201-55		UNIT
		MIN.	MAX.	MIN.	MAX.	
Read Cycle Time	Trc	45	-	55	-	nS
Chip Enable Access Time	TCE	-	45	-	55	nS
Address Access Time	ΤΑΑ	-	45	-	55	nS
Output Enable Access Time	TOE	-	25	-	30	nS
CE Low to Active Output	TcLz	0	-	0	-	nS
OE Low to Active Output	Tolz	0	-	0	-	nS
CE High to High-Z Output	Тснz	-	20	-	25	nS
OE High to High-Z Output	Тонz	-	20	-	25	nS
Output Hold Time	Тон	0	-	0	-	nS

Note: The parameter of TCLZ, TOLZ, TCHZ, TOHZ are characterized only and is not 100% tested.

Synchronous Burst Read Cycle Timing Parameters

(Vcc = $5.0V \pm 10\%$, Vcc = 0V, TA = 0 to 70° C)

PARAMETER	SYM.	W29S201-45		W29S	201-55	UNIT
		MIN.	MAX.	MIN.	MAX.	
CLK Frequency	Fclk	-	50	-	40	MHz
CLK Period	Тсүс	20	-	25	-	nS
CLK High Time	Ткн	7	-	8	-	nS
CLK Low Time	Tĸ∟	7	-	8	-	nS
CLK Rise Time	Tklh	-	2	-	3	nS
CLK Fall Time	TKHL	-	2	-	3	nS
CE Setup Time to CLK	TCES	15	-	20	-	nS
Address Setup Time to CLK	Taks	12	-	15	-	nS
Address Hold Time From CLK	Такн	2	-	2	-	nS
ADV Setup Time to CLK	TADVS	12	-	15	-	nS
ADV Hold Time From CLK	Tadvh	2	-	2	-	nS
MODE Setup Time to CLK	TMODS	15	-	20	-	nS
MODE Hold Time From CLK	Тморн	5	-	5	-	nS
CLK to Valid Output	Τκαν	-	15	-	17	nS
Output Hold Time From CLK	Ткон	1	-	1	-	nS

Note: The parameter of TKQH is characterized only and is not 100% tested.

AC Characteristics, continued

Write Cycle Timing Parameters

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Address Setup Time	Tas	0	-	-	nS
Address Hold Time	Тан	50	-	-	nS
WE and CE Setup Time	Tcs	0	-	-	nS
WE and CE Hold Time	Тсн	0	-	-	nS
OE High Setup Time	TOES	0	-	-	nS
OE High Hold Time	Тоен	0	-	-	nS
CE Pulse Width	Тср	70	-	-	nS
WE Pulse Width	Twp	70	-	-	nS
WE High Width	Тwpн	100	-	-	nS
Data Setup Time	TDS	50	-	-	nS
Data Hold Time	Трн	10	-	-	nS
Word programming Time	Твр	-	10	50	μS
Erase Cycle Time	TEC	-	0.1	1	S

Note: All AC timing signals observe the following guidelines for determining setup and hold times: (a) High level signal's reference level is VIH and (b) low level signal's reference level is VIL.

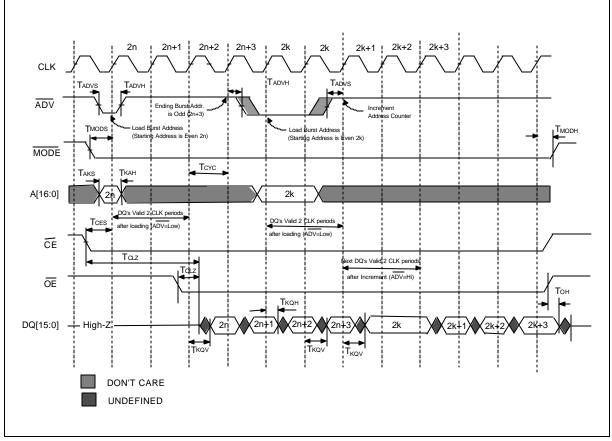
Data Polling and Toggle Bit Timing Parameters

PARAMETER	SYM.	W29S201-45		W29S201-55		UNIT
		MIN.	MAX.	MIN.	MAX.	
OE to Data Polling Output Delay	TOEP	-	25	-	30	nS
CE to Data Polling Output Delay	TCEP	-	45	-	55	nS
OE to Toggle Bit Output Delay	TOET	-	25	-	30	nS
CE to Toggle Bit Output Delay	TCET	-	45	-	55	nS

Hardware Reset Timing Parameters

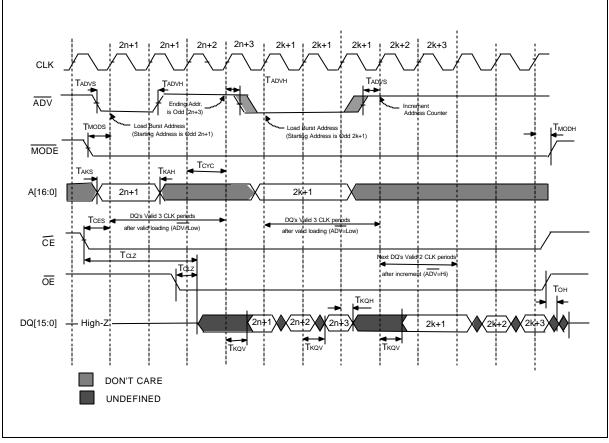
PARAMETER	SYM.	MIN.	MAX.	UNIT
RESET pin low to Read or Write	TREADY	-	500	nS
RESET Pulse Width	Trp	500	-	nS

L

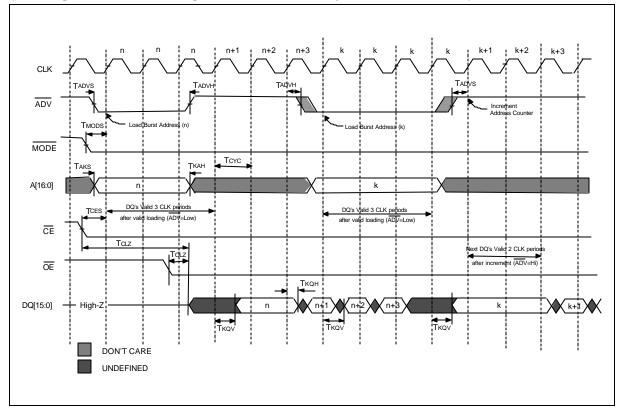

RESET High Time Before Read(1)	Тгн	50	-	nS
--------------------------------	-----	----	---	----

Note: 1. The parameters are characterized only and is not 100% tested.

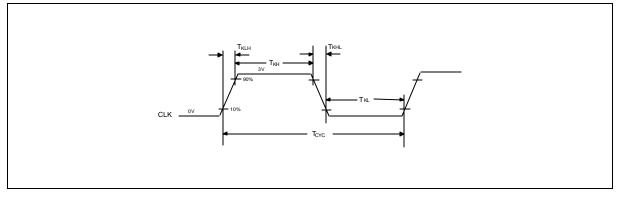
TIMING WAVEFORMS


Synchronous Burst Read Cycle Timing 1 (3-1-1-1 linear mode) (Starting Address is Even and Ending Address is Odd)

Note: The above waveform is applicable to synchronous read mode with starting random address is always Even and ending address is always Odd address only. The \overline{ADV} can be 1 CLK period pulse minimum, and the total wait states can be 3 CLK periods minimum. Initial output data DQ secome valid 2 CLK periods after the valid address loading started (\overline{ADV} =Low) & next sequential output data DQ secome valid 2 CLK periods after address increment started (\overline{ADV} =Hi).

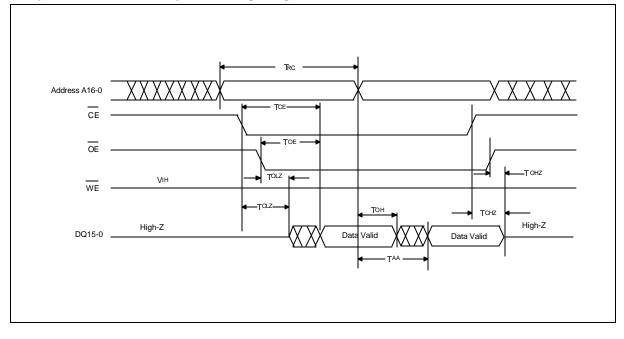

Synchronous Burst Read Cycle Timing 2 (4-1-1-1 linear mode) (Starting Address & Ending Address are both either Even or Odd)

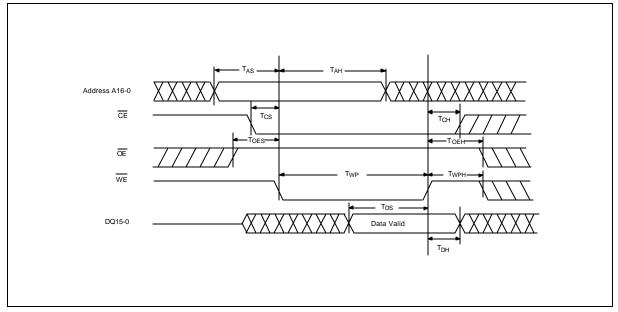
Note: The above waveform is applicable to synchronous burst read mode with starting random address and ending burst address are both either Even or Odd only (shown above with Starting & Ending are Odd address). The \overline{ADV} must be minimum 2 CLK period pulse, and the total wait states hence can be 4 CLK periods minimum. Initial output data DQ secome valid 3 CLK periods after the valid address loading started (\overline{ADV} =Low) & next sequential output data DQ secome valid 2 CLK periods after address increment started (\overline{ADV} =Hi).



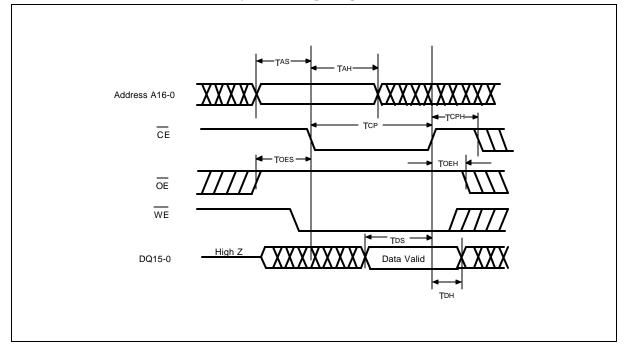
Synchronous Burst Read Cycle Timing 3 (5-1-1-1 linear mode) (Starting Address & Ending Address can be Any Random Address)

Note: The above waveform is applicable to synchronous burst read mode with any starting random address and any ending burst (can be either even or odd). The \overline{ADV} must be minimum 3 CLK period pulse, and the total wait states hence can be 5 CLK periods minimum. Initial output data DQ secome valid 3 CLK periods after the valid address loading started (\overline{ADV} =Low) & next sequential output data DQ secome valid 2 CLK periods after address increment started (\overline{ADV} =Hi).

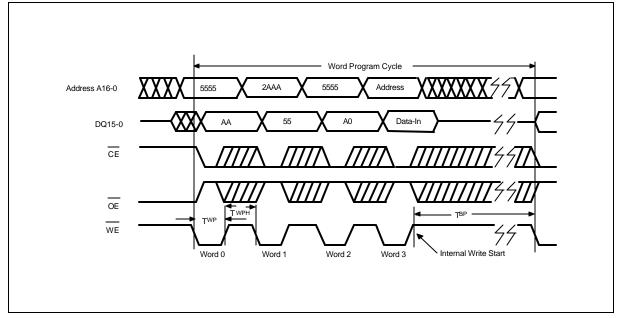

Clock Input Timing Diagram


Publication Release Date: April 1999 Revision A1

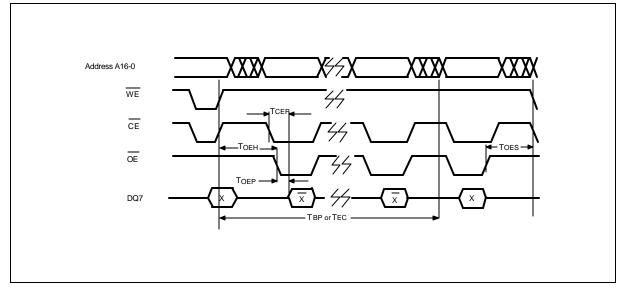
Assynchronous Read Cycle Timing Diagram



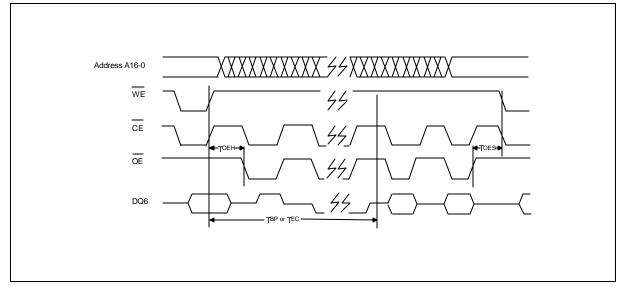
WE Controlled Command Write Cycle Timing Diagram



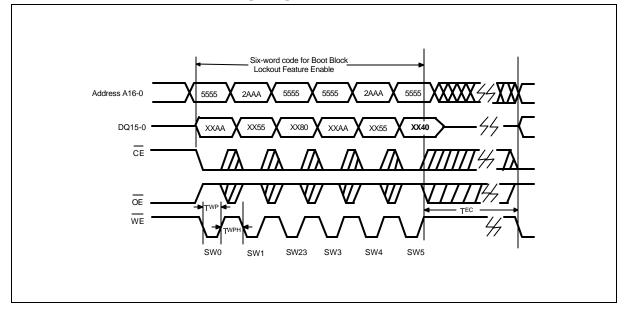
CE Controlled Command Write Cycle Timing Diagram



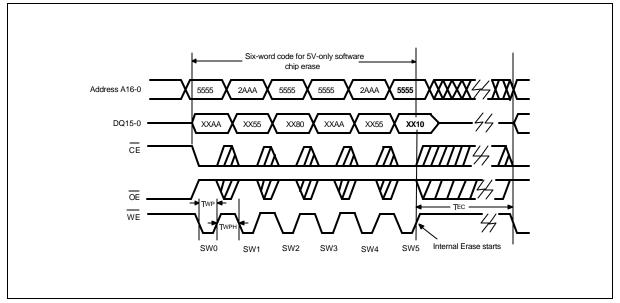
Program Cycle Timing Diagram



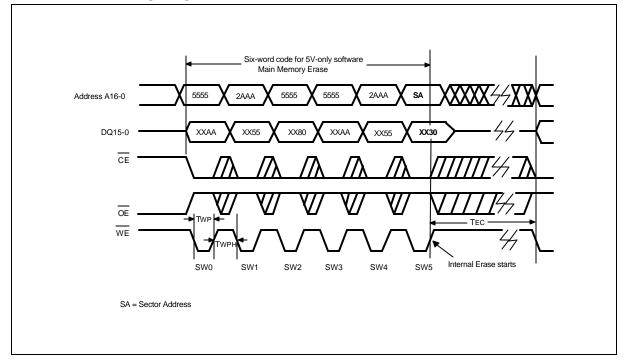
DATA Polling Timing Diagram



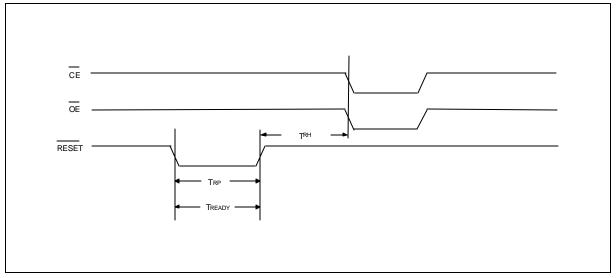
Toggle Bit Timing Diagram



Boot Block Lockout Enable Timing Diagram



Chip Erase Timing Diagram



Sector Erase Timing Diagram

Reset Timing Diagram

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	POWER SUPPLY CURRENT MAX. (mA)	STANDBY VDD CURRENT MAX. (mA)	PACKAGE	CYCLE
W29S201T-45	45	75	200 (CMOS)	48-pin TSOP (12 mm×20 mm)	1K
W29S201T-55	55	75	200 (CMOS)	48-pin TSOP (12 mm×20 mm)	1K
W29S201T-45B	45	75	200 (CMOS)	48-pin TSOP (12 mm×20 mm)	10K
W29S201T-55B	55	75	200 (CMOS)	48-pin TSOP (12 mm×20 mm)	10K

Notes:

1. Winbond reserves the right to make changes to its products without prior notice.

2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

PACKAGE DIMENSIONS

48-pin TSOP (12 mm ² 20 mm)

VERSION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A1	Apr. 1999		Advance Information only, some parameters & waveforms are to be determined.

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5796096 http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-27197006

Rm. 803, World Trade Square, Tower II, 2727 N. First St., San Jose, 123 Hoi Bun Rd., Kwun Tong, CA 95134, U.S.A. Kowloon, Hong Kong TEL: 408-9436666 TEL: 852-27513100 FAX: 852-27552064

Winbond Electronics (H.K.) Ltd. Winbond Electronics Corporation America TEL: 408-9436666 FAX: 408-5441798

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-27190505 FAX: 886-2-27197502

Note: All data and specifications are subject to change without notice.